
Course Code: D2510401					
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)		R25			
I M.Tech. I Semester MODEL QUESTION PAPER					
ADVANCED FINITE ELEMENT METHODS					
CAD/CAM					
Time: 3 Hrs.	Max. Marks: 60 M				
Answer ONE Question from EACH UNIT					
All questions carry equal marks					
Assume suitable data if necessary					
UNIT-1					
1.	a).	A rod fixed at its ends is subjected to a varying body force as shown in Figure below. Use the Rayleigh–Ritz method with an assumed displacement field $u = a_0 + a_1x + a_2x^2$ to determine displacement and stress. Take $E = 2 \times 10^{11} \text{ N/m}^2$, $A = 1 \text{ m}^2$ and $L = 1 \text{ m}$.	CO 1	KL 4	M 12
ENG OR EERING COLLEGE					
2.	a).	Explain the difference between strong form and weak form of a boundary value problem. Illustrate your explanation with any one example.	CO 1	KL 3	M 6
	b).	Explain the principle of the Galerkin method. How does it differ from other Weighted Residual Methods such as the collocation and least-squares methods?	CO 1	KL 3	M 6
UNIT-2					
3.	a).	Consider the bar shown in figure below. An axial load $P = 200 \text{ KN}$ is applied as shown. Determine the nodal displacements and stresses in each material.	CO 2	KL 4	M 12

Diagram of a beam with a central load P . The beam is supported by two vertical columns at points 1 and 3. The distance between the supports is 700 mm. The beam is divided into two segments: segment 1 (left of point 2) is made of aluminum and segment 2 (right of point 2) is made of steel. The width of segment 1 is 300 mm and the width of segment 2 is 400 mm. The beam is subjected to a horizontal force P at point 2. The coordinate axis X is shown to the right of point 3.

OR

For the two-bar truss shown in Figure below, determine the displacements of node 1 and the stress in elements 1–3.

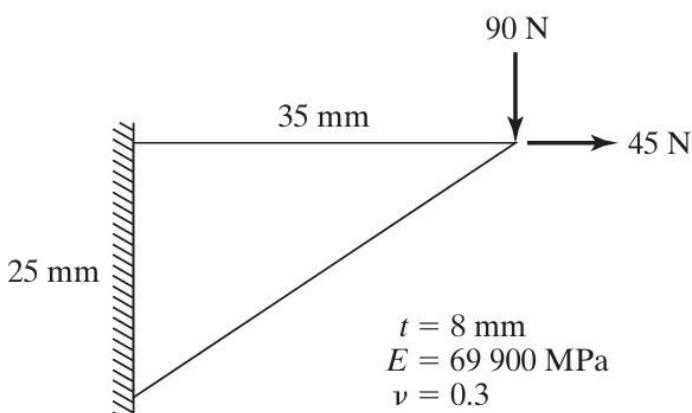
4. a).

$$2 \quad | \quad 4 \quad | \quad 12$$

$$\left. \begin{array}{l} C = 200\,000 \text{ MPa} \\ A = 300 \text{ mm}^2 \end{array} \right\} \text{for both members}$$

300 mm

400 mm



ENGINEERING COLLEGE

Estd. 1980

UNIT-3

For the configuration shown in Figure below determine the deflection at the point of load application using a one-element model.

5. a).

3 | 4 | 12

90 N

1

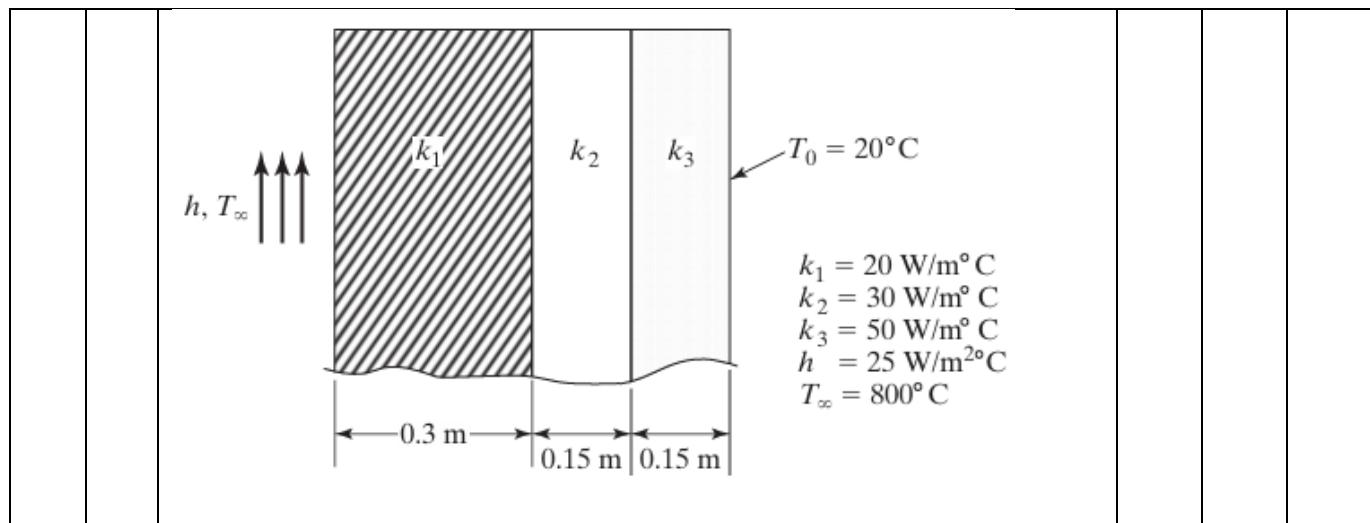
25

1

$$\begin{aligned}t &= 8 \text{ mm} \\E &= 69\,900 \text{ MPa} \\v &\equiv 0.3\end{aligned}$$

OR

6


3 3 12

Derive the element stiffness matrix for the three nodedaxi-symmetric triangular element.

UNIT-4

7.	a).	Differentiate between sub-parametric, iso-parametric, and super-parametric elements with suitable diagrams or examples of shape functions.	4	3	6
	b).	Evaluate the following integral using two-point Gaussian quadrature rule and compare the result with exact value.	4	3	6
		$\int_{-1}^1 \left[x^2 + \sin\left(\frac{\pi x}{2}\right) \right] dx$			
		OR			
8.	a).	Evaluate the Cartesian coordinate of the point P which has local coordinates $\xi=0.6$ and $\eta=0.8$ as shown in figure below.	4	3	6
	b).	Explain h-refinement and p-refinement techniques in FEM. Discuss their effect on accuracy and computational cost.	4	3	6
		UNIT-5			
9.	a).	Determine the Eigen vectors and Eigen values for the stepped bar shown in figure below. Take $E = 200$ GPa and specific weight 7850 kg/m^3 . Draw also the mode shapes.	5	4	12
		OR			
10.	a).	A composite wall consists of three materials, as shown in Figure below. The outer temperature is $T_0 = 20^\circ\text{C}$. Convection heat transfer takes place on the inner surface of the wall with $T_\infty = 800^\circ\text{C}$ and $h = 25 \text{ W/m}^2 \text{ }^\circ\text{C}$. Determine the temperature distribution in the wall.	5	4	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D2510402									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
ADVANCED CAD									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Explain the functional areas of CAD and discuss the importance of graphics standards in ensuring software interoperability			1 2 6				
	b).	Describe the specific requirements of graphics software and illustrate how to ensure the efficient use of CAD tools in a design workflow.			1 3 6				
		OR							
2.	a).	Discuss the fundamental requirements of geometric 3D modeling and identify why they are critical for modern engineering applications.			1 2 6				
	b).	Classify various geometric construction methods and outline the modeling facilities desired in a robust CAD system			1 3 6				
		UNIT-2							
3.	a).	Derive the transformation matrices for 2-D and 3-D operations, specifically for rotation, scaling, and translation using homogeneous coordinates.			2 3 6				
	b).	Compare and contrast perspective, orthotropic, and isometric projections, and examine the techniques used for hidden surface removal.			2 3 6				
		OR							
4.	a).	Analyze the structure and application of data exchange formats like IGES and STEP, and explain their role in product data management.			2 4 6				
	b).	Differentiate between Maximum Material Condition (MMC), Least Material Condition (LMC), and Regardless of Feature Size (RFS) in the context of dimensioning standards.			2 3 6				
		UNIT-3							
5.	a).	Distinguish between wireframe entities and curve representation methods, specifically comparing parametric analytic curves vs. synthetic curves.			3 3 6				
	b).	Explain the parametric representation of a Bezier curve and infer how the position of control points influences the final shape of the curve			3 3 6				
		OR							

6.	a).	Critique the limitations of Bezier curves and justify the use of B-Splines and NURBS (Non-Uniform Rational B-Splines) for complex shapes.	3	3	6
	b).	Construct the parametric equation for a Hermite cubic curve given specific geometric boundary condition	3	3	6
UNIT-4					
7.	a).	Categorize surface entities and explain the fundamental differences between analytic and synthetic surface representation methods.	4	3	6
	b).	Develop the parametric representation for a ruled surface and a surface of revolution, utilizing neat sketches to illustrate the geometry.	4	3	6
OR					
8.	a).	Demonstrate the construction properties of a B-Spline surface and compare it with a Bezier surface regarding local control.	4	3	6
	b).	Illustrate the concept of a blending surface and examine how surface manipulation techniques are applied in complex modeling.	4	3	6
UNIT-5					
9.	a).	Apply the Euler-Poincare formula to verify the topological validity of a given solid model within a Boundary Representation (B-Rep) scheme.	5	3	6
	b).	Evaluate the effectiveness of Constructive Solid Geometry (CSG) versus Boundary Representation (B-Rep) for different manufacturing applications.	5	4	6
OR					
10.	a).	Analyze the use of Boolean operators (Union, Intersection, Difference) in CSG and schematize the CSG tree for a complex part.	5	4	6
	b).	Explain the concept of Sweeping (linear and non-linear) and assess how Euler operators facilitate the manipulation of topological entities.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Course Code: D2510403									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
AI & ML FOR MECHANICAL ENGINEERING									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1									
1.	a.	Illustrate the need for Artificial Intelligence with suitable real-world examples.	1	3	6				
	b.	Define Machine Learning and explain its evolution, need, and applications in detail.	1	2	6				
OR									
2.	a.	Differentiate between supervised and unsupervised learning with examples.	1	2	6				
	b.	Explain the k-Nearest Neighbour (k-NN) algorithm with a neat diagram	1	2	6				
UNIT-2									
3.	a.	Illustrate the K-means clustering algorithm with steps and an example.	2	3	6				
	b.	What is dimensionality reduction? Explain why it is needed with proper examples.	2	2	6				
OR									
4.	a.	Write Bayes' theorem and explain its significance in machine learning with an example.	2	2	6				
	b.	Explain the Naïve Bayes classifier with an example.	2	2	6				
UNIT-3									
5.	a.	What are multilayer neural networks? Explain their structure and applications.	3	3	6				
	b.	Explain the advantages, limitations, and applications of Genetic Algorithms.	3	3	6				
OR									
6.		Explain the architecture of a Convolutional Neural Network with the roles of convolution, pooling, and fully connected layers.	3	3	12				
UNIT-4									
7.	a.	Compare traditional neural networks, CNNs, RNNs, and autoencoders.	4	3	6				
	b.	Describe bagging. Explain how Random Forests use bagging and feature randomness.	4	2	6				

OR					
8.		Illustrate the Recurrent Neural Networks (RNNs) in detail and describe their architecture and applications.	4	3	12
UNIT-5					
9.		Explain the commonly used machine learning packages (NumPy, Pandas, Scikit-learn, TensorFlow, PyTorch) and their roles in engineering applications.	5	2	12
OR					
10.	a).	Describe how machine learning can be used for creep estimation in materials under high temperature and stress.	5	2	6
	b).	Compare traditional mechanical design approaches with ML-enhanced design processes.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Course Code: D25104A0									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
MECHANICAL BEHAVIOR OF MATERIALS & CHARACTERIZATION									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Sketch and explain grain boundary strengthening mechanism in alloys			1				
	b).	Explain the effects of strain rate and temperature on the tensile property of engineering materials.			1				
		OR							
2.		State and Compare the Tresca and Von Mises yield criteria			1				
		1							
		3							
		12							
		UNIT-2							
3.	a).	Discuss about high temperature fracture			2				
	b).	Outline the characters that affect the creep phenomena			2				
		OR							
4.		Draw the deformation mechanism map and explain the various regions of the map.			2				
		3							
		12							
		UNIT-3							
5.	a).	Differentiate Low cycle fatigue and High cycle fatigue			3				
	b).	Discuss the influence of surface condition and metallurgical parameters on fatigue strength.			3				
		OR							
6.		Discuss the factors motivate the selection of engineering materials? Discuss how cost, service requirements, and performance criteria influence material selection decisions			3				
		3							
		12							
		UNIT-4							
7.	a).	With the help neat sketch explain the principle of Transmission Electron Microscopy (TEM)			4				
	b).	List and explain the instrumentation used in an XRD system			4				
		3							
		6							
8.		Discuss the principle and working of a Scanning Electron Microscope (SEM). Explain electron-sample interactions & imaging modes			4				
		3							
		12							

UNIT-5					
9.	a).	Explain the basic principle of Differential Thermal Analysis (DTA)	5	3	6
	b).	Discuss the instrumentation of Differential Scanning Calorimetry (DSC)	5	3	6
OR					
10.		List its advantages and disadvantages and also explain in detail the working procedure of EDS.	5	3	12

CO-COURSE OUTCOME

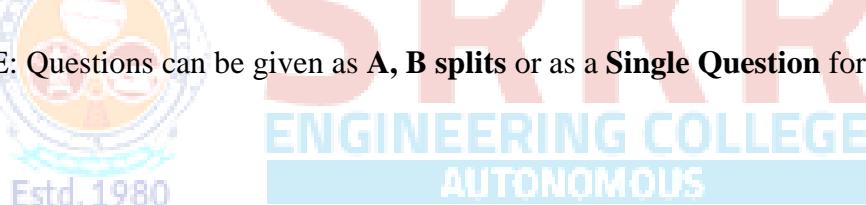
KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25104A1							
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				R25			
I M.Tech. I Semester MODEL QUESTION PAPER							
OPTIMIZATION AND RELIABILITY							
CAD/CAM							
Time: 3 Hrs.		Max. Marks: 60 M					
Answer ONE Question from EACH UNIT							
All questions carry equal marks							
Assume suitable data if necessary							
		UNIT-1		CO			
1.	a).	<p>The profit per acre of a farm is given by:</p> <p>$f(x_1, x_2) = 20 x_1 + 26 x_2 + 4 x_1 x_2 - 4 x_1^2 - 3 x_2^2$ where x_1 and x_2 denote, respectively, the labour cost and the fertilizer cost. Find the values of x_1 and x_2 to maximize the profit.</p>		1			
	b).	<p>Minimize: $3 x_1^2 + 4 x_2^2 + 5 x_3^2$ such that $x_1 + x_2 + x_3 = 10$ using Lagrange's multiplier method.</p>		3			
		OR		6			
2.	a).	<p>Use Kuhn-Tucker conditions to maximize:</p> <p>$f(x_1, x_2) = 2 x_1^2 + 12 x_1 x_2 - 7 x_2^2$</p> <p>Subject to: $2 x_1 + 5 x_2 \leq 98$</p>		1			
		13		3			
		12					
ESTD. 1980 AUTONOMOUS							
		UNIT-2					
3.	a).	<p>Minimize: $f(x_1, x_2) = 2 x_1^2 + x_2^2$ by using steepest descent method with the starting point (1, 2). Use two iterations.</p>		2			
		OR		3			
4.	a).	<p>Minimize: $f(x_1, x_2) = x_1 - x_2 + 2 x_1^2 + 2 x_1 x_2 + x_2^2$ by using Newton's method with the starting point (0, 0).</p>		6			
	b).	<p>What are the merits and demerits of classical optimization techniques?</p>		2			
		2		6			
		UNIT-3					
5.	a).	<p>Explain the working principle of Genetic Algorithm.</p>		3			
	b).	<p>What are the drawbacks of GA?</p>		3			
		OR		6			
6.	a).	<p>Explain the principles of Genetic Programming.</p>		3			
	b).	<p>What are the differences between GA and GP.</p>		3			
		3		6			
		UNIT-4					
7.	a).	<p>Explain Pareto's analysis.</p>		4			
		3		6			


	b).	Write the optimization model for minimizing the weight of a cantilever beam having concentrated load at free end and assuming constraints on maximum stress and maximum deflection. Take the diameter and length of the beam as the decision variables.	4	3	6
		OR			
8.	a).	Explain the optimization procedure for path synthesis of a four-bar mechanism	4	3	6
	b).	Describe how optimization techniques can be applied to improve gear tooth strength and minimize dynamic loads during operation.	4	3	6
		UNIT-5			
9.	a).	Define reliability, MTTF and MTBF.	5	2	6
	b).	Explain about the constant, linearly increasing and Weibull models of hazard analysis.	5	3	6
		OR			
10.	a).	Explain the key principles of reliability theory . Discuss failure distribution functions and their significance.	5	3	6
	b).	What is meant by design for reliability (DFR) ? Discuss the steps involved in incorporating reliability into the product development cycle.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a Single Question for 12 marks

Course Code: D25104A2									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
MECHATRONICS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1									
1.	a.	Illustrate the working principles of displacement and proximity sensors with examples.			CO				
					1				
	b.	Illustrate the advantages and disadvantages of mechatronics systems in modern applications.			3				
		OR			6				
2.		Analyze a full mechatronics system and explain the interaction between sensors, actuators, controllers, and structure.			1				
					4				
					12				
UNIT-2									
3.		Explain analog signal conditioning in detail—amplification, filtering, isolation, and linearization.			2				
					3				
					12				
OR									
4.	a.	Apply the characteristics of a P-N junction diode to design a rectifier for sensor circuits.			2				
					3				
	b.	Apply the use of BJTs and FETs in designing amplifiers for sensor signal conditioning.			6				
					2				
					3				
					6				
UNIT-3									
5.		Explain hydraulic and pneumatic systems with components, diagrams, and applications.			3				
					3				
					12				
OR									
6.	a.	Illustrate the working of an electro-pneumatic control circuit with a neat diagram.			3				
					3				
	b.	Analyze the differences between electrical, mechanical, and fluid actuators.			6				
					3				
UNIT-4									
7.		Analyze the differences between microprocessors and microcontrollers with examples.			4				
					4				
					12				
OR									
8.		Explain the architecture and working of PLC.			4				
					3				
					12				

		UNIT-5			
9.		Explain the architecture of a typical data acquisition system and its interfacing methods.	5	3	12
OR					
10		Discuss dynamic modelling of mechanical, electrical, and fluid systems with analogies and examples.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25104A3									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
COMPUTATIONAL FLUID DYNAMICS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Describe the fundamental conservation equations for fluid flow and heat transfer. Explain the physical significance of each term in these equations.			1 2 12				
		OR							
2.	a).	Describe various iterative solution methods (Jacobi, Gauss-Seidel, SOR) for solving discretized elliptical equations			1 2 12				
		UNIT-2							
3.	a).	Apply an explicit finite difference scheme to solve a one-dimensional hyperbolic wave equation.			2 3 6				
	b).	Explain the vorticity-stream function formulation and its numerical implementation.			2 3 6				
		OR							
4.	a).	Explain the artificial compressibility method for solving incompressible viscous flows. Describe its advantages and limitations with suitable examples.			2 3 12				
		UNIT-3							
5.	a).	Solve a 1D transient heat conduction problem using implicit FVM.			3 3 6				
	b).	Discuss the Total Variation Diminishing (TVD) scheme to solve convection-dominated problems by taking a simple example.			3 3 6				
		OR							
6.	a).	Derive and explain the finite volume formulation for a 2D steady heat conduction problem.			3 3 12				
		UNIT-4							
7.	a).	Explain the role of pressure correction formula in SIMPLE algorithm.			4 3 6				
	b).	Solve a lid-driven cavity flow problem using the SIMPLE algorithm			4 3 6				
		OR							
8.	a).	Compute the solution for transient one-dimensional heat conduction with time-dependent boundary conditions using the finite volume method.			4 3 12				
		UNIT-5							

9.	a).	Apply the Galerkin method, with linear elements to the first order equation. $a \frac{\partial u}{\partial x} = q$	5	3	12
		OR			
10.	a).	Describe the variational formulation approach in finite element method and apply it to a one-dimensional fluid flow problem. Explain the principle of minimum potential energy.	5	3	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25104B0									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
MEMS: DESIGN AND MANUFACTURING									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Apply the concept of micro-fabrication to explain the evolution of MEMS technology.			1				
	b).	Illustrate the working principles of micro-sensors to demonstrate their use in industrial applications.			1				
		OR							
2.	a).	Apply the principles of micro-actuation and micro-accelerometers to describe their role in modern MEMS systems.			1				
		UNIT-2							
3.		Apply the concept of doping to explain how the conductivity of silicon changes.			2				
		OR							
4.	a).	Employ plasma physics concepts to analyze plasma generation.			2				
	b).	Illustrate intermolecular force concepts to show how molecules attract each other.			2				
		UNIT-3							
5.		Use the principles of static bending to evaluate the behavior of thin plates in MEMS design.			3				
		OR							
6.	a).	Apply fracture mechanics to describe crack growth.			3				
	b).	Employ FEM principles to determine stress distribution in a micro-beam.			3				
		UNIT-4							
7.	a).	Apply FEM to describe the stress in a micro-pressure sensor.			4				
	b).	Interpret the principles of static bending to evaluate thin-plate behavior in MEMS design.			4				
		OR							
8.		Illustrate piezoelectric material properties to describe their use in MEMS.			4				

UNIT-5					
9.	a).	Apply the steps of photolithography to outline the fabrication of a micro-device.	5	3	6
	b).	Compare etching techniques to distinguish bulk and surface micromachining.	5	3	6
OR					
10.	a).	Describe CVD/PVD concepts to explain thin-film deposition	5	3	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25104B1									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
DESIGN FOR MANUFACTURING & ASSEMBLY									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Apply DFMA principles to explain its role in product development and model the progression of DFMA methodology over time.			1 3 6				
	b).	Use DFMA concepts to determine the functional differences between DFA, DFM, and DFMA.			1 3 6				
		OR							
2.	a).	Analyze a DFMA case study and identify how design changes reduced cost or assembly time.			1 3 6				
	b).	Apply the systematic DFA methodology to evaluate the number of operations required in a manual assembly.			1 3 6				
		UNIT-2							
3.	a).	Apply product design considerations in machining and model the required sketches.			2 3 6				
	b).	Apply dimensional tolerance principles to verify whether a machined part meets functional requirements.			2 3 6				
		OR							
4.	a).	Use design-for-machining rules to explain recommendations for machined parts with examples.			2 3 6				
	b).	Apply machining design rules to predict outcomes and solve machining-related design issues.			2 3 6				
		UNIT-3							
5.	a).	Determine how casting discontinuities affect the properties of a cast product and explain their influence.			3 3 6				
	b).	Determine the design guidelines for extruded sections and present the required sketches.			3 3 6				
		OR							
6.		Use the Keeler-Goodman diagram to determine the forming limit for a steel sheet and predict whether the sheet is safe from tearing or wrinkling.			3 3 12				

UNIT-4					
7.	a).	Determine weld design principles to find key factors in weldments and predict the effects of thermal stresses.	4	3	6
	b).	Illustrate the design considerations for a brazed joint with neat sketches.	4	3	6
OR					
8.		Apply forging design rules to determine the parting line, draft angle, and corner radii for a closed-die forged component.	4	3	12
UNIT-5					
9.	a).	Apply principles of automated assembly to select a suitable parts delivery system for a workstation.	5	3	6
	b).	Use automated assembly concepts to explain various escapement and placement devices.	5	3	6
OR					
10.		Compare multi-station and single-station assembly systems. For a small electronic device, recommend a suitable configuration using DFMA guidelines.	5	3	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a Single Question for 12 marks

Course Code: D25104B2									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
FRACTURE MECHANICS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1									
1.	Explain the types of fracture in brittle and ductile materials.				1 2 12				
OR									
2.	Explain the characteristics of R curve.				1 2 12				
UNIT-2									
3.	Define the stress concentration factor and stress intensity factor. Explain the significance of the critical stress intensity factor as a material parameter and describe how it is used to predict fracture.				2 2 12				
OR									
4.	Discuss the concepts of plane stress and plane strain conditions in fracture mechanics.				2 2 12				
UNIT-3									
5.	Describe the J-integral method used in Elastic–Plastic Fracture Mechanics.				3 2 12				
OR									
6.	Explain the factors that contribute to improving fracture toughness in materials.				3 2 12				
UNIT-4									
7.	Differentiate between High Cycle Fatigue (HCF) and Low Cycle Fatigue (LCF). Discuss their stress–strain characteristics, deformation mechanisms, and typical applications.				4 2 12				
OR									
8.	Explain the Total Life and Damage Tolerant approaches to fatigue life prediction.				4 2 12				
UNIT-5									
9.	Define creep and explain creep curves.				5 2 12				

		OR			
10.	Explain creep-fatigue interaction.		5	2	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25104B3									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. I Semester MODEL QUESTION PAPER									
SMART MATERIALS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Apply the principles of piezoelectricity to explain how a piezoelectric sensor can convert mechanical pressure into electrical output.			1				
	b).	Use the basic principles of smart materials to explain how piezoelectric and magnetostrictive materials can be integrated into smart structural systems.			3				
		OR							
2.	a).	Demonstrate the properties of Perovskite piezoceramics to justify their application in ultrasonic transducers.			1				
	b).	Compare single-crystal and polycrystalline piezoelectric materials to determine which is more suitable for high-precision applications.			3				
		UNIT-2							
3.	a).	Explain how IPMCs can be applied in underwater robotic movement or biomimetic devices.			2				
	b).	Use the characteristics of electronic materials to explain their role in smart sensing applications.			3				
		OR							
4.	a).	Explain how ER fluids change viscosity under electric fields and apply this principle to a clutch mechanism.			2				
	b).	Compare shape memory alloys and shape memory polymers to choose the better option for a temperature-activated actuator.			3				
		UNIT-3							
5.	a).	Explain how electrode pattern variations affect sensor sensitivity in a piezoelectric device.			3				
	b).	Use accelerometer principles to choose a suitable device for measuring building sway during an earthquake.			3				
		OR							
6.	a).	Determine the magnetostrictive sensing principles to detect stress changes in pipelines.			3				
	b).	Explain how magnetic delay-line sensing can be used for long-distance			3				
					6				

		structural health monitoring.			
UNIT-4					
7.	a.	Explain how the Joule effect influences the performance of a magnetostrictive actuator.	4	3	6
	b.	Determine the Wiedemann effect to analyze changes in actuator performance under magnetic fields.	4	3	6
OR					
8.	a.	Explain the IPMC actuator properties to design a soft robotic bending element.	4	3	6
	b.	Determine active vibration control concepts to reduce vibrations in a cantilever beam.	4	3	6
UNIT-5					
9.	a.	Explain the energy-harvesting materials to design a system that converts vibration energy into electrical power.	5	3	6
	b.	Determine self-healing polymer properties to design a system that repairs minor cracks automatically.	5	3	6
OR					
10.	a.	Apply self-healing concepts to improve the durability of coatings or protective layers.	5	3	5
	b.	Determine the intelligent system design concepts to propose a simple smart device with sensing and actuation functions.	5	3	7

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Course Code: D2520401									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
ROBOTICS & UAV SYSTEMS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1									
1.	a.	Explain the different robot configurations (Cartesian, Cylindrical, Spherical, and Articulated) and discuss their typical industrial applications.			CO 1 2 6				
	b.	Analyze the effect of robot workspace and work volume on the selection of a robot for a given manufacturing task.			KL 1 4 6				
OR									
2.	a.	Explain the working principles of different robot drive mechanisms such as electric, hydraulic, and pneumatic drives.			M 1 2 6				
	b.	Compare robot drive mechanisms based on torque capability, speed, energy efficiency, and maintenance requirements.			KL 1 4 6				
UNIT-2									
3.	a.	Explain the fundamentals of manipulator kinematics and discuss its importance in robot motion analysis.			CO 2 2 6				
	b.	Derive the homogeneous transformation matrix for rotation about the Z-axis followed by translation along the X-axis.			KL 2 3 6				
OR									
4.	a.	Explain manipulator path control and differentiate between point-to-point and continuous path control.			M 2 2 5				
	b.	Evaluate how homogeneous transformation matrices aid in trajectory generation and path control.			KL 2 5 7				
UNIT-3									
5.	a.	Explain the different types of grippers used in robotic systems and describe their operating principles.			CO 3 2 6				
	b.	Analyze the mechanical structure and mechanisms involved in parallel jaw and vacuum grippers with neat sketches.			KL 3 4 6				
OR									
6.	a.	Explain how tools function as end effectors and give examples of tool-type end effectors used in industries.			M 3 2 6				
	b.	Compare mechanical, magnetic, and adhesive grippers in terms of structure, operation, advantages, and limitations.			KL 3 4 6				
UNIT-4									

7.	a.	Explain lead-through programming and describe how robot paths are created using this method.	4	2	6
	b.	Analyze the capabilities and limitations of lead-through programming for industrial robotic applications.	4	4	6
OR					
8.	a.	Explain the syntax and structure of typical robot programming languages.	4	2	6
	b.	Analyze the essential elements of robot languages, such as data types, control structures, motion commands, and I/O operations.	4	4	6
UNIT-5					
9.	a.	Explain robot-centered and in-line robot cell layouts with neat sketches.	5	2	6
	b.	Analyze the design considerations involved in planning a robotic work system for a machining cell.	5	4	6
OR					
10.	a.	Explain work handling and control functions in robotic environments with examples.	5	2	6
	b.	Analyze the challenges of integrating multiple robots within an automated manufacturing cell.	5	4	6

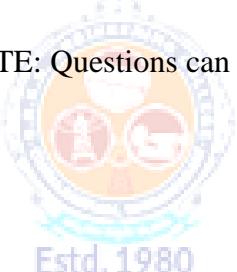
CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a Single Question for 12 marks

Course Code: D2520402									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
ADVANCED MANUFACTURING PROCESSES									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a.	Explain the principle, working, process parameters, advantages and limitations of Abrasive Jet Machining (AJM).			1				
	b.	Illustrate the complete working cycle of Wire Electro-Discharge Machining (Wire-EDM) with a neat sketch.			1				
		OR							
2.	a.	Describe Ultrasonic Machining (USM) and explain how process parameters affect machining performance.			1				
	b.	Discuss the need for Advanced Machining Processes in modern manufacturing than the conventional machining methods.			1				
		UNIT-2							
3.	a.	Describe the functioning of Electron Beam Machining (EBM) with a neat sketch and discuss its capabilities, advantages, limitations, and suitable applications.			2				
	b.	Explain the working principles of Additive Manufacturing (AM) and describe the steps involved in converting a 3D CAD model into a printed component.			2				
		OR							
4.	a.	Illustrate Stereo Lithography (SLA), LENS and Laminated Object Manufacturing (LOM) with reference to working mechanisms.			2				
	b.	Discuss the applications and limitations of Additive Manufacturing (AM) in various sectors.			2				
		UNIT-3							
5.	a.	Describe the various types of surface coatings and explain the working principles, advantages, and limitations of electroforming.			3				
	b.	Illustrate thermal spraying techniques and ion implantation methods used for surface modification.			3				
		OR							
6.	a.	Explain diffusion coating, ceramic coating, organic coating, and cladding methods.			3				
	b.	Explain the applications, characteristics, and classification of ceramics used in engineering			3				
		UNIT-4							


7.	a).	Explain the steps involved in lead-through programming in robots.	4	2	6
	b).	Analyze how robot programs represent a path in space.	4	4	6
OR					
8.	a).	Illustrate the structure and properties of composite materials. Explain the differences between particulate composites and fiber-reinforced composites.	4	3	6
	b).	Explain the top-down and bottom-up approaches in nanomaterial processing.	4	2	6
UNIT-5					
9.	a).	Explain the process of crystal growth and wafer preparation in microelectronic device fabrication.	5	2	6
	b).	Explain the oxidation process in microelectronics. Describe dry and wet oxidation techniques	5	2	6
OR					
10.	a).	Illustrate the construction, fabrication steps, and applications of Printed Circuit Boards (PCBs).	5	3	6
	b).	Explain bonding and packaging of integrated circuits. Discuss different bonding techniques and packaging types used in semiconductor devices.	5	2	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Course Code: D2520403									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
COMPUTER AIDED MANUFACTURING									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a.	Analyze the advantages and disadvantages of NC, CNC, and DNC systems.			1				
	b.	Apply the concepts of CAD/CAM automation in a manufacturing scenario.			1				
		OR							
2.	a.	Explain the role of computer-aided process planning (CAPP) in process optimization.			1				
	b.	Analyze the product life cycle and its impact on machine tool automation.			1				
		UNIT-2							
3.	a.	Illustrate the constructional features of CNC machine tools through diagrams.			2				
	b.	Analyze the function of feedback devices and drives in CNC positional control.			2				
		OR							
4.	a.	Apply the NC coordinate system for part programming of a sample component.			2				
	b.	Differentiate the designation of axes in CNC systems and their practical importance.			2				
		UNIT-3							
5.	a.	Develop a manual CNC program for drilling or turning operations.			3				
	b.	Analyze the difference between manual programming and advanced programming techniques such as macros.			3				
		OR							
6.	a.	Apply fixed cycles in CNC part programming for common machining tasks.			3				
	b.	Demonstrate the use of CAM software in generating and simulating part programs.			3				
		UNIT-4							
7.	a.	Analyze the data flow and subsystems involved in CIM systems.			4				
	b.	Evaluate the benefits and challenges of implementing CIM in			4				
		4							
		6							

		manufacturing.			
OR					
8.	a).	Apply automation principles to optimize production systems using CIM concepts.	4	3	6
	b).	Analyze the CIM wheel to explain process integration strategies.	4	4	6
UNIT-5					
9.	a).	Explain the working and industrial applications of RFID technology.	5	3	6
	b).	Analyze the differences between optical and non-optical inspection techniques.	5	4	6
OR					
10.	a).	Apply digital manufacturing technologies like IoT and cloud computing in manufacturing contexts.	5	3	6
	b).	Analyze the role of non-contact inspection methods in modern manufacturing quality control.	5	4	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Course Code: D25204A0							
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				R25			
I-M.Tech II Semester MODEL QUESTION PAPER							
PRECISION ENGINEERING							
CAD/CAM							
Time: 3 Hrs.		Max. Marks: 60 M					
Answer ONE Question from EACH UNIT							
All questions carry equal marks							
Assume suitable data if necessary							
		UNIT-1	CO	KL	M		
1.	a).	Explain the need for precision machining in modern manufacturing.	1	3	6		
	b).	Discuss how accuracy is evaluated in CNC and NC systems.	1	3	6		
OR							
2.	a).	Describe alignment testing of machine tools with examples.	1	3	6		
	b).	How does precision influence industrial competitiveness?	1	3	6		
		UNIT-2					
3.	a).	With neat sketches, describe diamond machining and its major industrial applications in ultra-precision manufacturing.	2	3	6		
	b).	Explain micro-machining processes in detail and compare micro-replication, micro-embossing, and micro-engraving.	2	3	6		
OR							
4.	a).	Discuss various high-quality surface generation processes such as lapping, honing, super finishing, and burnishing.	2	3	6		
	b).	Describe injection moulding in micro-manufacturing. Explain the process flow, challenges, and applications.	2	3	6		
		UNIT-3					
5.	a).	Describe in-process, post-process, and online measurement systems, highlighting their advantages and limitations.	3	3	6		
	b).	Explain various surface roughness evaluation methods and describe their industrial need with examples.	3	3	6		
OR							
6.	a).	Explain X-ray computed tomography and its metrological applications.	3	3	6		
	b).	Differentiate between STM and AFM based on measurement principles.	3	3	6		
		UNIT-4					
7.	a).	Discuss the industrial applications of nanotechnology in nano-electronics, nano-coatings, MEMS/NEMS, and high-density IC fabrication.	4	3	12		

		OR			
8.	a.	Describe Focused Ion Beam (FIB) milling and Atomic Layer Deposition (ALD) in detail and compare their capabilities.	4	3	12
		UNIT-5			
9.	a.	Explain the concept of datum and datum reference frames. Discuss the rules and steps followed in selecting datums for Geometrical Dimensioning & Tolerancing.	5	4	12
		OR			
10	a.	Describe in detail the various form and orientation controls used in Geometrical Dimensioning & Tolerancing with sketches and industrial applications.	5	4	12

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25204A1									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
THEORY OF ELASTICITY AND PLASTICITY									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1				CO	KL				
1.	a).	Explain the components of stress and strain with neat representations			1				
	b).	A rectangular plate is subjected to stresses $\sigma_x = 80$ MPa, $\sigma_y = 40$ MPa and $\tau_{xy} = 20$ MPa. Determine the principal stresses.			1				
	OR								
2.	a).	Derive the differential equations of equilibrium in plane stress condition.			1				
	b).	A stress function $\phi = ax^3 + by^3$ satisfies the biharmonic equation. Verify whether it can represent a possible stress field.			1				
	UNIT-2								
3.	a).	Explain Saint Venant's principle and its importance in elasticity problems.			2				
	b).	Using Fourier series, determine the temperature-based stress distribution in a thin plate subjected to sinusoidal boundary loading.			2				
	OR								
4.	a).	Derive the general stress equations in polar coordinates for axis symmetric loading.			2				
	b).	Compute stresses for a curved bar under pure bending with given data (E=200GPa, R=100mm, M=200N·m).			2				
	UNIT-3								
5.	a).	Define principal stresses and explain the principal stress ellipsoid.			3				
	b).	For a three-dimensional stress system, calculate maximum shear stress if $\sigma_1=100$ MPa, $\sigma_2=20$ MPa, $\sigma_3=-40$ MPa.			3				
	OR								
6.	a).	State and explain the principle of superposition and uniqueness theorem.			3				
	b).	Determine displacement at a point for a linear elastic body when subjected to known boundary forces			3				
	UNIT-4								

7.	a).	Explain Prandtl's stress function approach for torsion problems.	4	2	6
	b).	Determine shear stress at the boundary of a circular shaft of diameter 40 mm subjected to torque $T = 500 \text{ N}\cdot\text{m}$.	4	4	6
		OR			
8.	a).	Discuss torsion of thin-walled multi-cell sections using membrane analogy.	4	3	6
	b).	Compute torsional constant for an elliptical bar with major axis $a = 40 \text{ mm}$ and minor axis $b = 20 \text{ mm}$.	4	4	6
		UNIT-5			
9.	a).	Explain various yield criteria such as Tresca and Von Mises with yield surfaces.	5	2	6
	b).	For a material with $\sigma_y = 250 \text{ MPa}$, determine whether yielding occurs when $\sigma_1 = 200 \text{ MPa}$ and $\sigma_2 = 150 \text{ MPa}$ using Tresca criterion.	5	3	6
		OR			
10.	a).	Discuss plastic flow rules and plastic potential theory in detail.	5	3	6
	b).	Calculate plastic work done during simple tension if stress = 300 MPa and plastic strain = 0.02.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

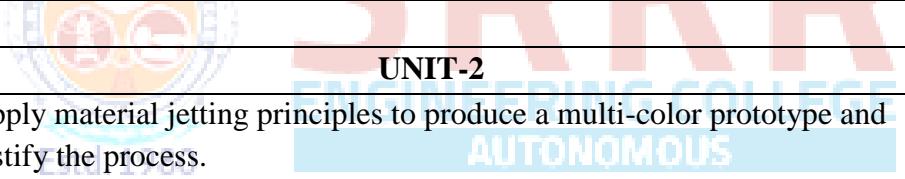
M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Course Code: D25204A2									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
ENTREPRENEURSHIP & DESIGN OF BUSINESS MODELS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1				CO	KL				
1.	a).	Illustrate how young graduates can pursue entrepreneurship as a career.			1	3	6		
	b).	Apply the idea of entrepreneurial personality to describe how personal traits influence business decisions.			1	3	6		
OR									
2.	Identify and describe the knowledge and skills required to become a successful entrepreneur.			1	3	12			
UNIT-2									
3.	Analyze how a supportive family environment can help a young entrepreneur start a business.			2	3	12			
OR									
4.	Evaluate the role of government or non-governmental organizations in promoting entrepreneurship.			2	3	12			
Estd. 1980 AUTONOMOUS									
UNIT-3									
5.	Analyze the impact of the Industrial Policy of 1991 on small and medium enterprises.			3	3	12			
OR									
6.	Evaluate how international trade policies impact Indian entrepreneurs.			3	3	12			
UNIT-4									
7.	a).	Use a simple example to illustrate how a prefeasibility study helps in deciding whether to proceed with a business idea.			4	3	6		
	b).	Apply forms of ownership to show how an entrepreneur selects a suitable ownership structure.			4	3	6		
OR									
8.	Demonstrate how budgeting helps in efficient resource allocation in a new business plan.			4	3	12			
UNIT-5									
9.	Analyze effective methods for monitoring and evaluating business			5	3	12			

		performance in small firms.			
OR					
10.	a).	Evaluate how venture capital can help IT startups grow rapidly.	5	3	6
	b).	Apply rehabilitation techniques to describe how a failing business unit can be revived.	5	3	6

CO-COURSE OUTCOME


KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25204A3							
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)				R25			
I M.Tech. II Semester MODEL QUESTION PAPER							
ADDITIVE MANUFACTURING							
CAD/CAM							
Time: 3 Hrs.		Max. Marks: 60 M					
Answer ONE Question from EACH UNIT							
All questions carry equal marks							
Assume suitable data if necessary							
		UNIT-1		CO			
1.	a.	Apply the steps of additive manufacturing to make a complex hollow part and explain why this process is suitable		1			
	b.	Compare Micro-stereo lithography with Two-Photon Polymerization for micro-device fabrication.		1			
		OR					
2.	a.	Classify AM processes and apply the correct category for manufacturing micro-features.		1			
	b.	Compare different SLA scan patterns and select the one that gives the best accuracy.		1			
		UNIT-2					
3.	a.	Apply material jetting principles to produce a multi-color prototype and justify the process.		2			
	b.	Compare the benefits and drawbacks of material jetting for medical models.		2			
		OR					
4.	a.	Evaluate the suitability of bio-extrusion for tissue engineering applications.		2			
	b.	Compare binder jetting with extrusion-based AM for producing ceramic components.		2			
		UNIT-3					
5.	a.	Compare LOM and UC for manufacturing lightweight structural components.		3			
		OR					
6.	a.	Apply bonding mechanisms in sheet lamination to fabricate a large laminated model.		3			
		UNIT-4					
7.	a.	Use case studies to propose a new industrial application for		4			
				3			
				6			

		DED/WAAM.			
	b).	Compare DMD and laser-engineered net shaping for repairing turbine blades.	4	3	6
OR					
8.	a).	Compare friction stir AM with WAAM for large component fabrication.	4	3	6
	b).	Evaluate the advantages and disadvantages of WAAM for shipbuilding structures.	4	3	6
UNIT-5					
9.	a).	Use the concept of solidification rate to predict the microstructure formed in AM metals.	5	3	6
	b).	Apply post-processing techniques to improve dimensional accuracy in AM parts.	5	3	6
OR					
10.	a).	Compare structure–property relationships for AM metals produced at different cooling rates.	5	3	6
	b).	Evaluate different support removal strategies for complex lattice structures.	5	3	6

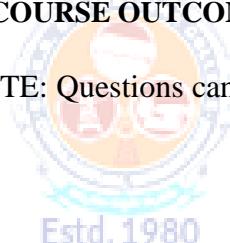
CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a Single Question for 12 marks

Course Code: D25204B0		
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)		R25
I M.Tech. II Semester MODEL QUESTION PAPER		
INTRODUCTION TO EMBEDDED SYSTEMS		
CAD/CAM		
Time: 3 Hrs.		Max. Marks: 60 M
Answer ONE Question from EACH UNIT		
All questions carry equal marks		
Assume suitable data if necessary		
	UNIT-1	
1.	<p>a). Explain the core components of an embedded system and their roles.</p> <p>b). Describe how different sensors (resistive, optical, thermal) are used in embedded systems.</p>	
	OR	
2.	<p>a). Discuss the importance of power supply considerations in embedded product design</p> <p>b). Analyze the safety and reliability requirements when designing embedded systems.</p>	
	UNIT-2	
3.	<p>a). Compare the ARM Cortex-M3 and Cortex-R4 architectures in terms of real-time performance.</p> <p>b). Analyse the impact of pipeline design on instruction execution in ARM processors.</p>	
	OR	
4.	<p>a). Explain the bus structures used in ARM-based embedded systems and their significance.</p> <p>b). Discuss factors influencing the choice of ARM processor cores in embedded product development.</p>	
	UNIT-3	
5.	<p>a). Demonstrate how SPI and I2C protocols are used to communicate with peripheral devices.</p> <p>b). Explain the working and applications of CAN protocol in embedded systems.</p>	
	OR	
6.	<p>a). Compare Bluetooth and ZigBee protocols for wireless sensor applications.</p> <p>b). Discuss the challenges of implementing USB 2.0 in embedded devices.</p>	
	UNIT-4	


7.	a).	Analyze the role of interrupt service routines in real-time embedded applications.	4	4	6
	b).	Discuss methods to optimize embedded C code for speed and memory on ARM processors.	4	4	6
OR					
8.	a).	Explain challenges involved in porting Linux to ARM-v7 using emulation tools.	4	4	6
	b).	Analyze the embedded software requirements of a medical monitoring system case study.	4	4	6
UNIT-5					
9.	a).	Analyze how different RTOS scheduler policies affect task responsiveness.	5	4	6
	b).	Explain inter-task communication methods in μ COS-II with examples.	5	4	6
OR					
10.	a).	Compare memory management techniques in traditional OS and RTOS environments.	5	4	6
	b).	Discuss the challenges in porting and developing applications on μ COS-II for ARM-v7.	5	4	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as A, B splits or as a Single Question for 12 marks

Course Code: D25204B1									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
MODELING AND SIMULATION OF MANUFACTURING SYSTEMS									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1									
1.	a).	Explain the terms system, model and simulation.			1 2 6				
	b).	Explain in detail on various steps involved in developing a simulation model.			1 2 6				
OR									
2.	a).	Explain various advantages and disadvantages of simulation			1 2 6				
	b).	Write about applications of simulation in Manufacturing system			1 2 6				
UNIT-2									
3.	a).	Explain the characteristics of following distributions (i)Poisson; (ii)Geometric; & (iii) Uniform			2 2 6				
	b).	Using mid square method generate 10 random numbers when $X_0 = 3043$.			2 3 6				
4.	a).	Explain about Mid Square method with example.			2 3 6				
	b).	Explain the Exponential distribution with example.			2 3 6				
UNIT-3									
5.	a).	Explain inverse Transform method.			3 2 6				
	b).	Write about challenges in generating pseudo random numbers			3 2 6				
6.		Explain Kolmogorov Smirnov test for Random Numbers with an example			3 3 12				
UNIT-4									
7.		Explain in detail how to Design and evaluation of simulation experiments.			4 2 12				
8.	a).	Explain briefly Comparison and selection of simulation languages			4 2 6				
	b).	Write about history of simulation languages			4 2 6				

UNIT-5					
9.	a).	Explain open and closed queuing networks with example.	5	2	6
	b).	Explain stochastic process in manufacturing.	5	2	6
OR					
10.	a).	Write a short note on simulation of M/M/1 queuing model.	5	2	6
	b).	Explain continuous time markov chain model with example.	5	2	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25204B2									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
SMART MANUFACTURING									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
		UNIT-1			CO				
1.	a).	Explain the key characteristics of Smart Manufacturing.			1				
	b).	Demonstrate how Industry 4.0 technologies help minimize the Six Big Losses in manufacturing.			1				
		OR							
2.	a).	Describe the various stages involved in implementing Smart Manufacturing			1				
	b).	Compare key challenges and enabling technologies in Industry 4.0.			1				
		UNIT-2							
3.	a).	Define a Smart Machine. Explain its salient features and critical subsystems with neat sketches.			2				
	b).	Discuss the concept of a Smart Sensor ecosystem and its role in IIoT-based manufacturing applications.			2				
		OR							
4.	a).	Explain the block diagram of an IIoT sensing device and describe its working principles			2				
	b).	Explain in detail the various sensors used in IIoT applications.			2				
		UNIT-3							
5.	a).	Explain the functions of Cyber-Physical Systems (CPS) and elaborate on the 5C architecture with a neat diagram.			3				
	b).	Discuss how CPS-based PHM systems enhance productivity in an Industry 4.0 factory.			3				
		OR							
6.	a).	Compare a conventional factory with an Industry 4.0-enabled factory using the 5C CPS architecture.			3				
	b).	Explain the role of the cognition and configuration levels in CPS.			3				
		UNIT-4							
7.	a).	Describe the applications and impact zones of Digital Twins in manufacturing industries.			4				
	b).	Explain the tools, benefits, and components of predictive maintenance in IoT-enabled systems.			4				

OR					
8.	a).	Compare preventive maintenance and predictive maintenance with suitable examples.	4	3	6
	b).	Discuss the use of augmented reality (AR) in electrical and mechanical maintenance activities.	4	3	6
UNIT-5					
9.	a).	Explain various IoT protocols used in Industry 4.0 across physical, network, and application layers.	5	3	6
	b).	Discuss criteria for selecting the right IoT connectivity protocol for an industrial environment.	5	3	6
OR					
10.	a).	Describe different network types used in industrial communication for IoT.	5	3	6
	b).	Explain the importance of industrial IoT communication requirements.	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS

Course Code: D25204B3									
SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)					R25				
I M.Tech. II Semester MODEL QUESTION PAPER									
INTRODUCTION TO QUANTUM TECHNOLOGIES									
CAD/CAM									
Time: 3 Hrs.		Max. Marks: 60 M							
Answer ONE Question from EACH UNIT									
All questions carry equal marks									
Assume suitable data if necessary									
UNIT-1				CO	KL	M			
1.	a.)	Determine the de Broglie hypothesis to calculate the wavelength of an electron accelerated through a given potential.			1	3	6		
	b.)	Use the physical significance of eigen values and eigen functions in quantum measurement.			1	3	6		
OR									
2.	a.)	Apply the time-independent Schrödinger equation to a particle in an infinite potential well.			1	3	7		
	b.)	Explain the impact of the Heisenberg Uncertainty Principle and find the measurements of position and momentum.			1	3	5		
UNIT-2									
3.	a.)	Explain the Bloch sphere representation to determine a general qubit state.			2	3	6		
	b.)	Explain Bell states to determine whether a given two-qubit state is entangled.			2	3	6		
OR									
4.		Classify the concept of quantum state tomography and discuss what measurements are needed.			2	4	12		
UNIT-3									
5.	a.)	Explain the operation of the Deutsch algorithm using interference principles.			3	3	6		
	b.)	Explain the working of Grover's search algorithm and amplitude amplification			3	3	6		
OR									
6.		A qubit is in the state . $ \psi\rangle = \alpha 0\rangle + \beta 1\rangle$. It passes through a bit-flip channel defined by: $\rho \rightarrow (1-p)\rho + pX\rho X$.			3	3	12		
		Questions 1. Compute the output density matrix. 2. Show that when $p = 1$, the output state is exactly the bit-flipped version of the input state.							

		3. For $p = 1/2$, show that the channel completely destroys the information in the computational basis.			
		UNIT-4			
7.		Explain the BB84 and Ekert protocol steps to generate a secure key and determine the application use for secure key.	4	3	12
		OR			
8.	a).	Use properties of single-photon sources in secure communication and Explain it.	4	3	6
	b).	Classify the implementation challenges such as noise, decoherence, and photon loss.	4	4	6
		UNIT-5			
9.	a).	Determine the quantum gravimetric improves sensitivity over classical sensors.	5	3	6
	b).	Explain the quantum imaging techniques. Use the application and their resolution limits	5	3	6
		OR			
10.	a).	Determine the trapped-ion hardware concepts to implement basic gate operations.	5	3	7
	b).	Explain the superconducting qubits. Use the application, advantages and limitations.	5	3	5

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

Estd. 1980

AUTONOMOUS

Course Code: D2530401

SAGI RAMA KRISHNAM RAJU ENGINEERING COLLEGE (A)

R25

II M.Tech. I Semester MODEL QUESTION PAPER

RESEARCH METHODOLOGY AND IPR

CAD/CAM

Time: 3 Hrs.

Max. Marks: 60M

Answer **ONE Question** from **EACH UNIT**

All questions carry equal marks

Assume suitable data if necessary

		CO	KL	M
--	--	----	----	---

UNIT-1

1.	a).	Write briefly about good Research criteria.	1	2	6
	b).	What are the errors in selecting a research problem?	1	2	6

OR

2.	a).	Describe briefly the Research process with a neat sketch.	1	2	6
	b).	Describe the scope and objectives of research problems in academic and industrial contexts.	1	3	6

UNIT-2

3.	a).	Write briefly about Effective Literature studies approaches.	2	2	6
	b).	Explain about Research ethics.	2	2	6

OR

4.	a).	Write briefly about Effective technical writing.	2	3	6
	b).	Explain about the Format of research proposal.	2	3	6

UNIT-3

5.	a).	Write about the various steps in acquisition of trademarks rights.	3	2	6
	b).	Discuss research ethics and its role in maintaining academic integrity.	3	3	6

OR

6.	a).	Write briefly about International cooperation on Intellectual Property.	3	2	6
	b).	Explain the procedure for grants of patents.	3	2	6

UNIT-4

7.	a).	Explain about patent information and databases.	4	2	6
	b).	Define Intellectual Property Rights (IPR) and explain patents, designs, trademarks, and copyrights.	4	2	6

OR

8.	a).	Write briefly about scope of patent rights.	4	2	6
	b).	Write briefly about Licensing and transfer of technology.	4	2	6

UNIT-5

9.	a).	Write briefly about Administration in the patent system.	5	2	6
	b).	Explain the scope of patent rights, licensing, and technology transfer.	5	3	6

OR

10.	a).	Write briefly about New developments in IPR.	5	2	6
	b).	Explain IPR case studies involving IITs and their significance in technology commercialization	5	3	6

CO-COURSE OUTCOME

KL-KNOWLEDGE LEVEL

M-MARKS

NOTE: Questions can be given as **A, B splits** or as a **Single Question** for 12 marks

SRKR
ENGINEERING COLLEGE
AUTONOMOUS